服务热线: 0755-2331 9702
189-3803-5875
新闻中心 News

电磁感应加热线圈匹配解析

日期: 2017-03-27
浏览次数: 151

 

前言
    从事感应加热电源研发制造多年,工作中发现很多用户及实际工作者,对感应加热电源的匹配原理并不是很清晰,在网上找到了这篇好文章,给大家分享。在此感谢升华感应给与的工作平台,也感谢家人及朋友对我工作的大力支持。
一、概述
        随着电力电子技术及器件的发展 ,固态感应加热电源已在金属熔炼、透热 、淬火、热处理 、焊接等行业得到越来越广泛的应用对于热处理行业的大部分负载来说 ,感应加热电源设备须经过负载阻抗匹配后才能正常工作。所谓负载阻抗匹配就是为了使电源输出额定功率,而采取的使负载阻抗等于电源额定阻抗的方法和措施。
        对于一台电源设备 ,其额定电压 Un和额定电流In 取决于电源本身 ,为使电源能输出额定功率 ,要求有合适的负载阻抗:
 Z = Zn =  Un/In,N与电源匹配 ,如果 Z ≠Zn,电源与负载不匹配,电源利用率就降低。
以简单的直流电压源为例:
电源额定电压 Ud:400 V ,额定电流 ,d= 400 A ;
(1)额定阻抗 lzdl= 1 欧姆,负载阻抗 l z l=1  欧姆时,电源输出额定功率;
(2)l z l= 0.5 欧姆 时,输出电流为 ,I= Ud/l z l=400/0.5 = 800 A ,电源过载 ;
(3)l z l= 2欧姆 时,输出电流为 ,I= Ud/l z l= 400/2 = 200A ,电源轻载。图 1可清楚的表明以上所说情况。
图 1 中,线 1表示负载与电源匹配,线 2 表示电源重载,线 3 表示电源轻载。电源与负载不匹配时,为保证不损坏电源设备,只能降额运行,降低了电源利用率,适当的匹配可以使电源全功率运行,保证设备正常运转 ,减少故障。在实际中,很少有负载阻抗恰好等于电源额定阻抗的情况 ,负载匹配是感应加热装置安全可靠经济运行的一个必不可少的环节,是感应加热电源负载侧设计的重要内容。
二、负载等效电路分析
感应加热装置的感应器支路可以等效成一个电阻和一个电感串联或并联的形式 ¨1,等效的电感 、电阻是感应器和负载耦合作用的结果,其值受感应器与负载耦合程度的影响。等效感应器支路是一个感性负载,功率因数很低 ,需加入电容器进行无功补偿 ,补偿电容器与感应线圈的连接方式有串联和并联两种形式 ,从而形成两种基本的谐振电路:并联谐振电路 、串连谐振电路。为了提高效率和保证逆变器安全运行,固态感应加热电源一般工作在准谐振状态 ,串联谐振电路和并联谐振电路的特性 ,见表 1。
从表 1 可以看出,串联谐振 电路在谐振状态下等效阻抗为纯电阻,并达到最小值 ,并联谐振电路在谐振状态下等效阻抗达到最大值,为了获得最大的电源输出功率 ,串联谐振电路采用电压源供电,并联谐振电路采用电流源供电,即电压源型感应加热电源必须匹配串联谐振型负载电路 ,电流源型感应加热电源必须匹配并联谐振型负载电路 ,这是电源与负载的初次匹配措施。
三、负载匹配方案分析
负载匹配方法主要分为两大类 :静 电耦合和电磁耦合。静电耦合主要采用无源元件 ,通过改变电路拓扑结构来改变负载阻抗 。这一方法在一定条件下可以省去匹配变压器 ,因此更加经济、方便。电磁耦合主要采用匹配变压器 ,通过变压器变换阻抗特性进行负载匹配。下面针对不同电路形式进行分析。
3.1并联谐振电路负载匹配方法
并联谐振电路等效阻抗 z。= L/RC ,改变等效电路 中的电容 、电感 、电阻的值都能改变阻抗 ,这一特 性使 并联 谐振 电路 的 阻抗 匹配更 加灵活 。

电磁感应加热线圈匹配解析3.1.1 匹配电容元件

根据电容元件加入的位置不同,可以分为以下 3 种方法,分别示意在图 2、图 3 及图 4。
图 2 等效阻抗 Zo = L/RC ,其 中 C = C1+C2+ C3,通过开关的开、合可以改变电容值,从而改变负载电路等效阻抗,此法简单易行 ,是实践中常用方法之一 ,但属于有级调节,调节时要求断电。另外,c 的变化会引起电路谐振频率发生变化,负载谐振频率受工艺要求限制,当频率超出范围时应配合匹配电感的方法来抵消频率的变化。注意,所有匹配方法都应考虑频率的变化,处理方法类似,以后不再叙及。
图 3 等效阻抗 Z 。= LCs /[RC (C +Cs  )],可见加入 Cs 后 ,阻抗成 Cs /(C + Cs)倍变化,可使原来的等效阻抗变小 ,适用于阻抗相对电源来说高的负载。
图 4 是串并联负载电路 ,电路仍工作在并联谐振状态 ,工作情况与并联谐振电路类似 , Cs 的加入使容性阻抗增加。该电路优点是启动容易,通常作为晶闸管感应加热电源的起动电路,单纯作为负载匹配措施则较少使用。
3.1.2  匹配电感元件

一般分为两种情况 ,分别如图 5 及图 6 所示 。

以上两种电路形式是通过加入可变电抗器改变感应线圈支路的电感 ,进而改变等效阻抗值 ,图 5 串联 电感 的方式只能增加感应器支路 的电感 ,图 6 的连接方式可以增大支路电感 ,也可以减小支路电感。由于并联谐振属于电流谐振 ,并联支路 中流过谐 振 电流 ,达 到 电源 电流 的 Q (Q =XL/R )倍 ,谐振电路等效电感增加会增加铜损。
感应加热电源负载匹配方法中利用电感匹配的方法可以归纳为以下几种。
— —利用带铁心的多抽头电抗器 ,改变抽头调节电抗值 ,属于有级调节,调节时要求断电。由于制作工艺上的原因,抽头的数量受到限制 ,无法做到细调。
— —采用动铁心电抗器 ,移动铁心与线圈的相对位置来改变电抗值 ,属于无级调节,调节时无须断电,可以跟随负载阻抗的变化 ,匹配效果好 ,容易组成稳定感应线圈上 的电压 ,或恒温 、恒功率自动控制系统 ,但铁心动作须经过一套传动系统 ,故障率较高,且须建立协调控制模型。
— —采用动圈式变压器的形式 ,一次线圈与感应线圈并联,二次侧绕组 自身短接 ,移动一次绕组与二次绕组的相对位置,便可以改变一次侧的等值电抗,属于无级调节。变压器必须采用空心变
压器 ,一二次绕组相对位置的变化也须经过一套传动装置,故障率高,同样须建立控制模型。
— —用磁饱和电抗器作为Ln,通过调节直流激磁电流来改变电抗值 ,属于无级调节。该方法无移动、旋转部件 ,也无触点控制 ,安全可靠 ,维护工作量小。
— —增减感应线圈的匝数。在感应线圈的几何形状不变的条件下 (感应线圈的长度和直径不变),感应线圈的电感与其匝数N 的平方成正比,当匝数 N增减时 ,感应线圈的电感 L和工件的等效阻抗也会相应增减 ,从而改变负载 的等效阻抗 。
 — —改变感应线圈与被加热工件 的耦合情况。感应器与被加热工件耦合的紧密程度直接影响感应器支路等效阻抗 ,从而影响谐振 电路等效阻抗 ,但是,当感应器与工件的间隙增大 ,耦合较松时会降低加热效率,匹配效果有限。
3.1.3  匹配电阻元件
负载匹配的根本 目的是尽量使电源额定功率全部用于工件加热 ,也就是提高电源效率的问题,因此,在负载匹配的问题中,应结合有利于提高电源效率综合进行分析。在电路中加入电阻可方便地使负载阻抗与电源相匹配 ,但装置的损耗增加 ,加热效率降低 ,没有根本解决问题 ,不是可行的负载匹配方法。
3.1.4  匹配变压器
利用电磁耦合进行负载匹配是通过变压器的变阻抗特性实现的,这在感应加热中非常普遍 ,采用的电路形式主要有两种,如图 7 及图 8 所示。变压器变阻抗特性以图 7 为例说明如下:变压器副边电路工作在谐振状态,等效阻抗 ZD= L/R C,通过变比为N:1 的变压器后,变压器原边的等效阻抗 Zo= N^2L/R C(忽略变压器漏抗的影响),可见阻抗成N^2 倍变化。
图 7 电路中感应器支路所需无功容量由并联电容器提供 ,负载电路工作在准谐振状态 ,匹配变压器通过少量无功功率 ,所需容量较小 ,匹配变压器原边流过电源电流,损耗不大,可以采用铁心变
压器。图 8 电路中,匹配变压器中既通过有功功率又通过无功功率 ,所需变压器容量较大 ,铁心变压器容量受铁心制造水平限制 ,在传输容量大时难以胜任 ,所以此电路通常采用空心变压器 ,匹配变压器原边流过谐振电流,损耗较大。利用匹配变压器进行负载匹配时应考虑以下选择原则。
— —空心变压器易实现大容量化 ,适合于初级补偿 ,减轻了对 C 的要求 ,但随着电压 、功率的上升 ,其体积相应增大。铁心变压器难以实现大容量化 ,无功须在次级补偿 ,增加了 C 的选择难度。另外,空心变压器漏感大 ,变比不等于匝比,在设计中难以掌握,变比较大时实现困难 ,铁心变压器漏感小,变比等于匝比,对于极低的负载阻抗可以做成较大的匝比。
— —铁 心变压 器 的铁 损正 比于频 率 的平方 ,高频 时发热严重 ,这提高了对变压器冷却系统 的要求 ,所 以高频时常采用铁淦氧磁芯或空心变压器。
— —当负载工作频率较高时 ,为保证匹配效率要求匹配变压器漏抗尽量小 ,这对匹配变压器的设计提出了更高要求。
— —补偿 电容 C 一般放在匹配变压器高压侧 ,在提供无功容量一定时 ,可大大降低电容值 ,当然,这需综合考虑所选电路形式 、变压器和电容的市场售价而定。
— —为适应多种负载 ,匹配变压器应设计成多抽头变压器,但抽头数量受变压器结构的限制 ,对负载的调节有限 ,难以做到最佳匹配。随着频率的增加 ,多抽头变压器的设计更加困难。
— —随着铜价的上升 ,变压器造价会不断上升 ,而电容价格随着电容生产技术的发展有下降趋势,另外利用匹配变压器进行负载匹配须考虑其寄生元件的影响 (漏抗 、寄生电容),变压器铜损的存在也会降低电源效率 ,所 以进行负载匹配时应首选静电耦合方法。
— —匹配变压器可以起到电气隔离的作用。
3.2  串联谐振电路负载匹配方法
通过对串联谐振电路负载特性 的分析可知 ,串联谐振电路等效阻抗只与等效电阻  有关 ,改变等效电路 中电容和电感值不影响等效阻抗 ,这一特性大大限制 了串联谐振 电路的负载 匹配措施。
3.2.1  改变感应器与工件的耦合
在并联谐振 电路匹配电感 的方法中已经提到,改变感应线圈与被加热工件间的耦合程度可以改变等效电阻 ,此法也适用于串联谐振 电路阻抗 匹配 。
3.2.2  负载 串接
当负载阻抗小时,将数个完全相同的感应线圈和被加热工件 串接起来可以增 大负载等效阻抗 。
3.2.3  匹配电容元件
图 9(a) 为匹配电路,该电路仍工作于串联谐振状态 ,即谐振时并联部分相当于感性负载 ,图 9(b)为图 9(a)的等效电路 ,其中
可见,Cs 的加入影响串联谐振电路等效电阻,从而影响串联谐振电路等效阻抗。在一定频率下负载的感性无功功率一定 ,工作在谐振状态的容性无功功率等于感性无功功率,所以要求补偿的容性无功功率容量也是一定的,Cs的加入只是分担了一部分容性无功功率,不会因增加无功功率容量而增加成本。
3.2.4  匹配变压器
串联谐振电路受其电路形式的限制 ,匹配方法单一,所以在实际应用中,串联谐振 电路一般利用匹配变压器实现负载匹配。利用变压器进行负载匹配的研究与并联谐振电路类似,不同的是串联谐振属于电压谐振 ,匹配变压器位置不同所承受电压不 同。图 10 所示电路中匹配变压器原边为谐振 电压,对匹配变压器绝缘要求较高。而图 11所示电路中匹配变压器承受电源电压 ,可以降低绝缘要求。
四、结语
串联谐振电路的特性决定改变等效电容和电感值不能改变谐振状态的等效阻抗 ,静电耦合负载阻抗匹配方案中许多不适用于串联谐振电路 ,串联谐振 电路一般采用匹配变压器进行负载匹配 。并联谐振电路可用静电耦合和电磁耦合进行负载阻抗匹配 ,匹配方法灵活,对负载适应性强,这是并联谐振型逆变电源广泛应用的原因之一。
利用静电耦合进行负载匹配是一种简单、经济的方法 ,而利用电磁耦合进行负载匹配也灵活方便 ,两种方式各有优势,在实际应用中,一种匹配方法有时难 以满足多方面要求 ,为达到最佳匹配 ,可以将多种方法配合使用。

电磁感应加热线圈匹配解析

关闭窗口】【打印
News / 推荐新闻 More
2018 - 07 - 13
电磁采暖炉的十大优点,未来生活的品质深圳汇凯电磁采暖炉以电力为热源,以辐射的方式行热传导,再均匀向室内辐射热量,从而创造出具有理想温度分布的室内环境,使人体感官达到最舒适的取暖方式,是公认最舒适的采暖方式,也是现代生活品质的象征。与传统空调、取暖器等采暖设备相比,它的优势究竟有哪些?一、养生保健电磁采暖炉系统是运用远红外辐射原理供热。中医学上有寒从脚下起,血液流通不畅之说。而医学临床试验证明通过远红外辐射采暖,室内温度均匀,温度从地面向上辐射,由下而上递减,对心血管疾病,腰腿疼,关节炎,肩周炎,颈椎病,肠胃病,妇科病的消除或缓解有显著成效。二、舒适卫生电磁采暖炉系统可以让脚直接接触热源,温足而全身暖,从而达到头凉脚暖的最佳的人体热舒适感。并且,相对于空调在室内造成的空气对流,安装电采暖系统的室内风速小于0.15米/秒,减少了室内空气对流的污染;更由于地面热容量大,热稳定性好,尽显中医提倡的...
2018 - 06 - 05
经久耐用变频电磁采暖炉替代燃煤锅炉 成为采暖界新宠儿今年80多岁的李奶奶已经在乌鲁木齐生活了60多年了,自从实施煤改电供暖以来,空气质量高,他站在自家窗前就能看到远山的场景,心情也舒畅多了。随着人们对环境意识的增强,近年来,各地政府采取积极措施,用清洁取暖取代高排放、高污染的煤炭进行供热,告别了黑烟和噪声。煤改电电磁采暖炉是一种零排放、零噪声的绿色供暖设备,它采用智能控制技术,可实现任何区域的智能化控制,温度、时间均可自动调节。电磁采暖炉成为了采暖界的新宠儿,掀起了中国采暖时代大革命。传统的采暖供热方式会使室内空气干燥,人们会出现口唇干燥、咽喉肿痛、咳嗽,进而引发上呼吸道感染,而且干燥的环境还会加重哮喘,肺气肿等患者病情,由天北方冬天气候室内外差大,血压也会变大,继而加重心脏的负担,选择电磁采暖炉可告别传统采暖带来的各种弊端。电磁采暖炉的七大优势:一、智能科技化更高电磁采暖炉是一套智能高科...
2018 - 06 - 01
六一的天空湛蓝如水,六一甜美的歌声飘扬在祖国的大好河山,我们要用无穷的智慧和勤劳的双手,举起山,挑起河,保护祖国的环境和未来花朵,飞向金色的目标……汇凯科技人员要团结、奋进、加油!灿烂的明天是属于我们的!祝福所有的小朋友!祝所有小朋友六一节快乐
2018 - 05 - 31
深圳汇凯变频电磁采暖炉 节能环保优势多目前,我国占统治地位的供暖方式依然是以燃煤为主的集中供暖。它的弊端已经日益显现出来:首先是浪费能源和资源,比如煤炭资源、水资源以及传输过程中损耗掉的热能。其次是污染环境。仅哈尔滨市每年向大气排放烟尘就有20万吨。煤烟污染成为北方许多城市冬季环境质量下降的一个重要原因。在国家煤改电政策的推动下,最近几年我国电采暖行业发展突飞猛进。不论是城市供暖还是农村采暖,电供暖设备都占住得了巨大的市场。尤其是电磁采暖更是发展迅速。  在供暖方式的体制改革下。电磁采暖新技术对节约能源、保护环境和建设节约型社会的意义,国家已大力鼓励采用新热源、电取暖的新型供暖方式来替代传统供暖方式,并对电取暖户实行低谷用电价格优惠。三大优势:一、节能性优势 电磁采暖炉是目前市面上数一数二的节能设备,它不用于传统的锅炉,具有突出的节能性,比传统采暖设备要节能30%的费用...
Copyright ©2005 - 2013 深圳市汇凯科技有限公司
犀牛云提供企业云服务
技术顾问
0755-23319702
在线沟通
公司公众号
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

5

电话号码管理

  • 400-669-7527
6

二维码管理

展开