服务热线: 0755-2331 9702
189-3803-5875
新闻中心 News

电磁感应加热线圈匹配解析

日期: 2017-03-27
浏览次数: 262

 

前言
    从事感应加热电源研发制造多年,工作中发现很多用户及实际工作者,对感应加热电源的匹配原理并不是很清晰,在网上找到了这篇好文章,给大家分享。在此感谢升华感应给与的工作平台,也感谢家人及朋友对我工作的大力支持。
一、概述
        随着电力电子技术及器件的发展 ,固态感应加热电源已在金属熔炼、透热 、淬火、热处理 、焊接等行业得到越来越广泛的应用对于热处理行业的大部分负载来说 ,感应加热电源设备须经过负载阻抗匹配后才能正常工作。所谓负载阻抗匹配就是为了使电源输出额定功率,而采取的使负载阻抗等于电源额定阻抗的方法和措施。
        对于一台电源设备 ,其额定电压 Un和额定电流In 取决于电源本身 ,为使电源能输出额定功率 ,要求有合适的负载阻抗:
 Z = Zn =  Un/In,N与电源匹配 ,如果 Z ≠Zn,电源与负载不匹配,电源利用率就降低。
以简单的直流电压源为例:
电源额定电压 Ud:400 V ,额定电流 ,d= 400 A ;
(1)额定阻抗 lzdl= 1 欧姆,负载阻抗 l z l=1  欧姆时,电源输出额定功率;
(2)l z l= 0.5 欧姆 时,输出电流为 ,I= Ud/l z l=400/0.5 = 800 A ,电源过载 ;
(3)l z l= 2欧姆 时,输出电流为 ,I= Ud/l z l= 400/2 = 200A ,电源轻载。图 1可清楚的表明以上所说情况。
图 1 中,线 1表示负载与电源匹配,线 2 表示电源重载,线 3 表示电源轻载。电源与负载不匹配时,为保证不损坏电源设备,只能降额运行,降低了电源利用率,适当的匹配可以使电源全功率运行,保证设备正常运转 ,减少故障。在实际中,很少有负载阻抗恰好等于电源额定阻抗的情况 ,负载匹配是感应加热装置安全可靠经济运行的一个必不可少的环节,是感应加热电源负载侧设计的重要内容。
二、负载等效电路分析
感应加热装置的感应器支路可以等效成一个电阻和一个电感串联或并联的形式 ¨1,等效的电感 、电阻是感应器和负载耦合作用的结果,其值受感应器与负载耦合程度的影响。等效感应器支路是一个感性负载,功率因数很低 ,需加入电容器进行无功补偿 ,补偿电容器与感应线圈的连接方式有串联和并联两种形式 ,从而形成两种基本的谐振电路:并联谐振电路 、串连谐振电路。为了提高效率和保证逆变器安全运行,固态感应加热电源一般工作在准谐振状态 ,串联谐振电路和并联谐振电路的特性 ,见表 1。
从表 1 可以看出,串联谐振 电路在谐振状态下等效阻抗为纯电阻,并达到最小值 ,并联谐振电路在谐振状态下等效阻抗达到最大值,为了获得最大的电源输出功率 ,串联谐振电路采用电压源供电,并联谐振电路采用电流源供电,即电压源型感应加热电源必须匹配串联谐振型负载电路 ,电流源型感应加热电源必须匹配并联谐振型负载电路 ,这是电源与负载的初次匹配措施。
三、负载匹配方案分析
负载匹配方法主要分为两大类 :静 电耦合和电磁耦合。静电耦合主要采用无源元件 ,通过改变电路拓扑结构来改变负载阻抗 。这一方法在一定条件下可以省去匹配变压器 ,因此更加经济、方便。电磁耦合主要采用匹配变压器 ,通过变压器变换阻抗特性进行负载匹配。下面针对不同电路形式进行分析。
3.1并联谐振电路负载匹配方法
并联谐振电路等效阻抗 z。= L/RC ,改变等效电路 中的电容 、电感 、电阻的值都能改变阻抗 ,这一特 性使 并联 谐振 电路 的 阻抗 匹配更 加灵活 。

电磁感应加热线圈匹配解析3.1.1 匹配电容元件

根据电容元件加入的位置不同,可以分为以下 3 种方法,分别示意在图 2、图 3 及图 4。
图 2 等效阻抗 Zo = L/RC ,其 中 C = C1+C2+ C3,通过开关的开、合可以改变电容值,从而改变负载电路等效阻抗,此法简单易行 ,是实践中常用方法之一 ,但属于有级调节,调节时要求断电。另外,c 的变化会引起电路谐振频率发生变化,负载谐振频率受工艺要求限制,当频率超出范围时应配合匹配电感的方法来抵消频率的变化。注意,所有匹配方法都应考虑频率的变化,处理方法类似,以后不再叙及。
图 3 等效阻抗 Z 。= LCs /[RC (C +Cs  )],可见加入 Cs 后 ,阻抗成 Cs /(C + Cs)倍变化,可使原来的等效阻抗变小 ,适用于阻抗相对电源来说高的负载。
图 4 是串并联负载电路 ,电路仍工作在并联谐振状态 ,工作情况与并联谐振电路类似 , Cs 的加入使容性阻抗增加。该电路优点是启动容易,通常作为晶闸管感应加热电源的起动电路,单纯作为负载匹配措施则较少使用。
3.1.2  匹配电感元件

一般分为两种情况 ,分别如图 5 及图 6 所示 。

以上两种电路形式是通过加入可变电抗器改变感应线圈支路的电感 ,进而改变等效阻抗值 ,图 5 串联 电感 的方式只能增加感应器支路 的电感 ,图 6 的连接方式可以增大支路电感 ,也可以减小支路电感。由于并联谐振属于电流谐振 ,并联支路 中流过谐 振 电流 ,达 到 电源 电流 的 Q (Q =XL/R )倍 ,谐振电路等效电感增加会增加铜损。
感应加热电源负载匹配方法中利用电感匹配的方法可以归纳为以下几种。
— —利用带铁心的多抽头电抗器 ,改变抽头调节电抗值 ,属于有级调节,调节时要求断电。由于制作工艺上的原因,抽头的数量受到限制 ,无法做到细调。
— —采用动铁心电抗器 ,移动铁心与线圈的相对位置来改变电抗值 ,属于无级调节,调节时无须断电,可以跟随负载阻抗的变化 ,匹配效果好 ,容易组成稳定感应线圈上 的电压 ,或恒温 、恒功率自动控制系统 ,但铁心动作须经过一套传动系统 ,故障率较高,且须建立协调控制模型。
— —采用动圈式变压器的形式 ,一次线圈与感应线圈并联,二次侧绕组 自身短接 ,移动一次绕组与二次绕组的相对位置,便可以改变一次侧的等值电抗,属于无级调节。变压器必须采用空心变
压器 ,一二次绕组相对位置的变化也须经过一套传动装置,故障率高,同样须建立控制模型。
— —用磁饱和电抗器作为Ln,通过调节直流激磁电流来改变电抗值 ,属于无级调节。该方法无移动、旋转部件 ,也无触点控制 ,安全可靠 ,维护工作量小。
— —增减感应线圈的匝数。在感应线圈的几何形状不变的条件下 (感应线圈的长度和直径不变),感应线圈的电感与其匝数N 的平方成正比,当匝数 N增减时 ,感应线圈的电感 L和工件的等效阻抗也会相应增减 ,从而改变负载 的等效阻抗 。
 — —改变感应线圈与被加热工件 的耦合情况。感应器与被加热工件耦合的紧密程度直接影响感应器支路等效阻抗 ,从而影响谐振 电路等效阻抗 ,但是,当感应器与工件的间隙增大 ,耦合较松时会降低加热效率,匹配效果有限。
3.1.3  匹配电阻元件
负载匹配的根本 目的是尽量使电源额定功率全部用于工件加热 ,也就是提高电源效率的问题,因此,在负载匹配的问题中,应结合有利于提高电源效率综合进行分析。在电路中加入电阻可方便地使负载阻抗与电源相匹配 ,但装置的损耗增加 ,加热效率降低 ,没有根本解决问题 ,不是可行的负载匹配方法。
3.1.4  匹配变压器
利用电磁耦合进行负载匹配是通过变压器的变阻抗特性实现的,这在感应加热中非常普遍 ,采用的电路形式主要有两种,如图 7 及图 8 所示。变压器变阻抗特性以图 7 为例说明如下:变压器副边电路工作在谐振状态,等效阻抗 ZD= L/R C,通过变比为N:1 的变压器后,变压器原边的等效阻抗 Zo= N^2L/R C(忽略变压器漏抗的影响),可见阻抗成N^2 倍变化。
图 7 电路中感应器支路所需无功容量由并联电容器提供 ,负载电路工作在准谐振状态 ,匹配变压器通过少量无功功率 ,所需容量较小 ,匹配变压器原边流过电源电流,损耗不大,可以采用铁心变
压器。图 8 电路中,匹配变压器中既通过有功功率又通过无功功率 ,所需变压器容量较大 ,铁心变压器容量受铁心制造水平限制 ,在传输容量大时难以胜任 ,所以此电路通常采用空心变压器 ,匹配变压器原边流过谐振电流,损耗较大。利用匹配变压器进行负载匹配时应考虑以下选择原则。
— —空心变压器易实现大容量化 ,适合于初级补偿 ,减轻了对 C 的要求 ,但随着电压 、功率的上升 ,其体积相应增大。铁心变压器难以实现大容量化 ,无功须在次级补偿 ,增加了 C 的选择难度。另外,空心变压器漏感大 ,变比不等于匝比,在设计中难以掌握,变比较大时实现困难 ,铁心变压器漏感小,变比等于匝比,对于极低的负载阻抗可以做成较大的匝比。
— —铁 心变压 器 的铁 损正 比于频 率 的平方 ,高频 时发热严重 ,这提高了对变压器冷却系统 的要求 ,所 以高频时常采用铁淦氧磁芯或空心变压器。
— —当负载工作频率较高时 ,为保证匹配效率要求匹配变压器漏抗尽量小 ,这对匹配变压器的设计提出了更高要求。
— —补偿 电容 C 一般放在匹配变压器高压侧 ,在提供无功容量一定时 ,可大大降低电容值 ,当然,这需综合考虑所选电路形式 、变压器和电容的市场售价而定。
— —为适应多种负载 ,匹配变压器应设计成多抽头变压器,但抽头数量受变压器结构的限制 ,对负载的调节有限 ,难以做到最佳匹配。随着频率的增加 ,多抽头变压器的设计更加困难。
— —随着铜价的上升 ,变压器造价会不断上升 ,而电容价格随着电容生产技术的发展有下降趋势,另外利用匹配变压器进行负载匹配须考虑其寄生元件的影响 (漏抗 、寄生电容),变压器铜损的存在也会降低电源效率 ,所 以进行负载匹配时应首选静电耦合方法。
— —匹配变压器可以起到电气隔离的作用。
3.2  串联谐振电路负载匹配方法
通过对串联谐振电路负载特性 的分析可知 ,串联谐振电路等效阻抗只与等效电阻  有关 ,改变等效电路 中电容和电感值不影响等效阻抗 ,这一特性大大限制 了串联谐振 电路的负载 匹配措施。
3.2.1  改变感应器与工件的耦合
在并联谐振 电路匹配电感 的方法中已经提到,改变感应线圈与被加热工件间的耦合程度可以改变等效电阻 ,此法也适用于串联谐振 电路阻抗 匹配 。
3.2.2  负载 串接
当负载阻抗小时,将数个完全相同的感应线圈和被加热工件 串接起来可以增 大负载等效阻抗 。
3.2.3  匹配电容元件
图 9(a) 为匹配电路,该电路仍工作于串联谐振状态 ,即谐振时并联部分相当于感性负载 ,图 9(b)为图 9(a)的等效电路 ,其中
可见,Cs 的加入影响串联谐振电路等效电阻,从而影响串联谐振电路等效阻抗。在一定频率下负载的感性无功功率一定 ,工作在谐振状态的容性无功功率等于感性无功功率,所以要求补偿的容性无功功率容量也是一定的,Cs的加入只是分担了一部分容性无功功率,不会因增加无功功率容量而增加成本。
3.2.4  匹配变压器
串联谐振电路受其电路形式的限制 ,匹配方法单一,所以在实际应用中,串联谐振 电路一般利用匹配变压器实现负载匹配。利用变压器进行负载匹配的研究与并联谐振电路类似,不同的是串联谐振属于电压谐振 ,匹配变压器位置不同所承受电压不 同。图 10 所示电路中匹配变压器原边为谐振 电压,对匹配变压器绝缘要求较高。而图 11所示电路中匹配变压器承受电源电压 ,可以降低绝缘要求。
四、结语
串联谐振电路的特性决定改变等效电容和电感值不能改变谐振状态的等效阻抗 ,静电耦合负载阻抗匹配方案中许多不适用于串联谐振电路 ,串联谐振 电路一般采用匹配变压器进行负载匹配 。并联谐振电路可用静电耦合和电磁耦合进行负载阻抗匹配 ,匹配方法灵活,对负载适应性强,这是并联谐振型逆变电源广泛应用的原因之一。
利用静电耦合进行负载匹配是一种简单、经济的方法 ,而利用电磁耦合进行负载匹配也灵活方便 ,两种方式各有优势,在实际应用中,一种匹配方法有时难 以满足多方面要求 ,为达到最佳匹配 ,可以将多种方法配合使用。

电磁感应加热线圈匹配解析

关闭窗口】【打印
News / 推荐新闻 More
2020 - 05 - 25
电磁加热器使用过程中线圈温度过高原因电磁加热器通过电磁感应加热线圈把电能量直接作用于金属料筒使其自身发热,热效率高达90%。并且根据实际情况在料筒外部包裹一定厚度的隔热保温材料,使外表面温度降到用手触摸的温度有效防止热量散失。隔热保温材料自身也会有一定的热量散发,通常不会很高,一般温度在50℃到60℃左右,人手触摸也没有问题。那如果电磁加热器使用过程中线圈温度过高的话,可以从以下几个原因考虑:1、电磁加热器的高温电缆线径小不同功率的电磁加热器配备的高温电缆的线径不同,因为所要输送的量不同。如果通道过窄,在有限的空间内承载量超过了它本身能力,散发的热量自然会比正常的要高。2、电磁加热器的保温棉过薄为了充分发挥保温棉保温、隔热的效果,保温棉的厚度通常在15-25mm左右,如果厚度过薄,料筒热量散失的就多,那高温线缆的温度也就会高;相反如果保温棉厚度过大,就会影响高温线缆的电磁感应效果,造成电热...
2020 - 05 - 11
长期运行的电磁加热器保养时需要更换哪些配件电磁加热器由多种部件组成,其中一些部件经长期工作后其性能会逐渐降低、老化,这也是电磁加热器发生故障的主要原因,为了保证设备长期的正常运转,下列器件应定期更换:  1、冷却风扇  电磁加热器的功率模块是是发热严重的器件,其连续工作所产生的热量必须要及时排出,一般风扇的寿命大约为10kh~40kh。按电磁加热器连续运行折算为2~3年就要更换一次风扇,交流风扇一般为220V、380V之分,更换时电压等级不要搞错。  2、滤波电容  中间直流回路滤波电容:又称电解电容,其主要作用就是平滑直流电压,吸收直流中的低频谐波,它的连续工作产生的热量加上电磁加热器本身产生的热量都会加快其电解液的干涸,直接影响其容量的大小。正常情况下电容的使用寿命为5年左右。建议每年定期检查电容容量一次,一般其容量减少20%以上应更换新的滤波电容器。
2020 - 05 - 04
汇凯电磁加热器的日常维护保养:(1)定期对电磁加热器进行除尘,重点是铜排、电磁加热控制板,必要时可将整流模块、逆变模块和控制柜内的线路板拆出后进行除尘。电磁加热器下进风口、上出风口是否积尘或因积尘过多而堵塞。电磁加热器因本身散热要求通风量大,故运行一定时间以后,表面积尘十分严重,须定期清洁除尘。(2)将电磁加热器盖子打开, 仔细检查交、直流母排有无变形、腐蚀、氧化,母排连接处螺丝有无松脱,各安装固定点处坚固螺丝有无松脱,固定用绝缘片或绝缘柱有无老化开裂或变形,如有应及时更换,重新紧固,对已发生变形的母排须校正后重新安装。(3)对线路板、母排等除尘后,进行必要的防腐处理,涂刷绝缘漆,对已出现局部放电、拉弧的母排须去除其毛刺后,再进行处理。对已绝缘击穿的绝缘板,须去除其损坏部分,在其损坏附近用相应绝缘等级的绝缘板对其进行隔绝处理,紧固并测试绝缘并认为合格后方可投入使用。(4)对输入、整流及逆变...
2020 - 04 - 27
电磁感应加热器开机送电流程汇凯电磁感应加热器的开机送电流程,请各位客户按照以下步骤操作,以免造成故障以及安全隐患。1、    汇凯电磁加热控制柜送380v前请检查机器内部有无螺丝以及排线松动。2、    送电前检查380v进线(UVW),线圈输出线(L1L2)接线有没有接错。3、    用要用表检测各线路有无短路,开路。4,电磁线圈端请检查接线端子是否牢靠。4、    请电气工程专业人员进行接线作业。有触电和火灾的危险。5、    接地端子一定要可靠接地。(380V 级:特别第 3 种接地)有触电和火灾的危险。6、    请勿直接触摸输出端子,80kw电磁加热器的输出端子切...
Copyright ©2005 - 2013 深圳市汇凯科技有限公司
犀牛云提供企业云服务
技术顾问
189 3803 5875
在线沟通
公司公众号
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

5

电话号码管理

  • 400-669-7527
6

二维码管理

展开